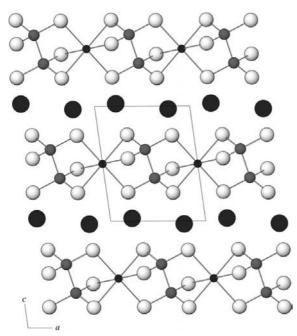
Acta Crystallographica Section C **Crystal Structure** Communications

ISSN 0108-2701

High-temperature synthesis of Rb₂MnP₂S₆ in molten salt medium

Stephen P. Taylor, Mariusz Krawiec and Shiou-Jyh Hwu*


Department of Chemistry, Clemson University, Clemson, South Carolina 29634-0973, USA Correspondence e-mail: shwu@clemson.edu

Received 11 May 2001 Accepted 23 October 2001 Online 13 February 2002

Transparent yellow plates of rubidium manganese hexathiodiphosphate, Rb₂MnP₂S₆, were synthesized in molten RbBr. The compound is isotypic to other compounds of the type $A_2MP_2Q_6$ (A = K, Rb, Cs; M = Mn, Fe; Q = S, Se). Its structure can be viewed as columns of face-sharing S₆ polyhedra parallel to the *a* axis, interconnected by Rb^+ . The S₆ polyhedra are centered alternately by Mn (in octahedral coordination) and P_2 units (in trigonal antiprisms). The Mn atom and P_2S_6 group lie on centers of symmetry.

Comment

There are seven known compounds of the type $A_2MP_2Q_6$ (A = K, Rb, Cs; M = Mn, Fe; Q = S, Se), including K₂FeP₂S₆

Figure 1

The layered structure of Rb₂MnP₂S₆, projected onto the plane of parallel [MnP₂S₆] chains, separated by a layer of Rb⁺ cations (large black circles). The large light-gray circles represent S, medium gray circles represent P, and small black circles represent Mn atoms.

(Carrillo-Cabrera et al., 1992, 1994) and K₂MnP₂S₆ (Menzel et al., 1994); and $K_2MnP_2Se_6$, $Rb_2MnP_2Se_6$, $Cs_2MnP_2Se_6$, K₂FeP₂Se₆, and Cs₂FeP₂Se₆ (McCarthy & Kanatzidis, 1995). The title compound is typical of this class of compounds. The first two compounds listed above were synthesized from the elements, while the final five were synthesized in a polychalcophosphate flux. We were able to prepare rubidium manganese hexathiodiphosphate using molten rubidium bromide as a flux-growth solvent, similar to the synthesis of KNb₂PS₁₀ (Do & Yun, 1996), which was performed in a eutectic mixture of LiCl and KCl. As in the other members of this class, the structure is related to that of CdCl₂ (Brec, 1986, and references therein; see Fig. 1).

Experimental

Rb₂S₆ powder was prepared by reaction of stoichiometric amounts of rubidium metal (Strem, 99.9+%) and sulfur powder (Aldrich, 99.99%) in liquid ammonia (Fehér, 1975). Crystals of Rb₂MnP₂S₆ were synthesized from a mixture of Rb₂S₆ powder (0.1107 g, 0.3044 mmol), MnS powder (Strem, 99.9%; 0.0265 g, 0.3046 mmol) and P₄S₃ powder (Fluka, 98%; 0.3127 g, 1.4209 mmol), with RbBr (GFS, 99.9%; 0.0503 g, 0.3042 mmol) acting as a halide flux-growth solvent. The powders were ground together in an agate mortar inside a nitrogen-filled glove-box, and were then loaded into fused-quartz tubing. The reaction tube was subsequently sealed under vacuum. After heating at 973 K for 5 d, the reaction vessel was allowed to cool to room temperature over a period of 7 d. Transparent yellow plate crystals of Rb₂MnP₂S₆ were present throughout the reaction product, which also included MnS crystals, unreacted P₄S₃ powder, and RbBr.

Crystal data	
$Rb_2MnP_2S_6$	$D_x = 2.809 \text{ Mg m}^{-3}$
$M_r = 480.18$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 6144
$a = 6.1570 (12) \text{\AA}$	reflections
b = 12.308 (3) Å	$\theta = 1.7-26.1^{\circ}$
c = 7.5610 (15) Å	$\mu = 11.00 \text{ mm}^{-1}$
$\beta = 97.74 \ (3)^{\circ}$	T = 293 (2) K
$V = 567.8(2) \text{ Å}^3$	Plate, yellow
Z = 2	$0.15 \times 0.05 \times 0.05 \text{ mm}$
Data collection	
Rigaku APC8 diffractometer	1034 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.055$

Absorption correction: multi-scan (REQABA; Jacobson, 1999) $T_{\min} = 0.258, T_{\max} = 0.577$ 5210 measured reflections 1110 independent reflections

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0001P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.055$ wR(F^2) = 0.137	+ 12.3434 <i>P</i>] where $P = (F_o^2 + 2F_c^2)/3$
S = 1.32	$(\Delta/\sigma)_{\rm max} < 0.001$
1110 reflections	$\Delta \rho_{\rm max} = 1.06 \text{ e } \text{\AA}^{-3}$
52 parameters	$\Delta \rho_{\rm min} = -0.73 \ {\rm e} \ {\rm \AA}^{-3}$

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve

ax = 26.1° $h = -7 \rightarrow 7$

 $k = -15 \rightarrow 14$ $l = -9 \rightarrow 9$

Table 1

Selected geometric parameters (Å, °).

Mn1-S2	2.619 (3)	P1-S1 ⁱ	2.008 (3)
Mn1-S3	2.652 (3)	P1-S2	2.021 (3)
Mn1-S1	2.659 (3)	P1-S3	2.022 (3)
Mn1-P1	2.964 (2)	$P1-P1^{i}$	2.208 (5)
S2-Mn1-S3 ⁱⁱ	102.54 (8)	S1 ⁱ -P1-S2	115.95 (15)
S2-Mn1-S3	77.46 (8)	S1 ⁱ -P1-S3	115.97 (16)
S2-Mn1-S1 ⁱⁱ	89.90 (8)	S2-P1-S3	109.32 (14)
S3-Mn1-S1 ⁱⁱ	90.85 (8)	$S1^{i} - P1 - P1^{i}$	104.14 (16)
S2-Mn1-S1	90.10 (8)	$S2-P1-P1^{i}$	105.25 (17)
S3-Mn1-S1	89.15 (8)	$S3-P1-P1^{i}$	104.85 (18)

Symmetry codes: (i) 1 - x, -y, 1 - z; (ii) -x, -y, 1 - z.

structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *TEXSAN for Windows* (Molecular Structure Corporation, 1997–1999).

The authors gratefully acknowledge the continued financial support from the National Science Foundation

(DMR-0077321 and EPS-9977797 for the research and CHE-9808165 for the X-ray diffractometer).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1335). Services for accessing these data are described at the back of the journal.

References

- Brec, R. (1986). Solid State Ionics, 22, 3-30.
- Carrillo-Cabrera, W., Saßmannshausen, J., von Schnering, H. G., Menzel, F. & Brockner, W. (1992). Z. Kristallogr. 202, 150–151.
- Carrillo-Cabrera, W., Saßmannshausen, J., von Schnering, H. G., Menzel, F. & Brockner, W. (1994). Z. Anorg. Allg. Chem. 620, 489–494.
- Do, J. & Yun, H. A. (1996). Inorg. Chem. 35, 3729-3730.

Fehér, F. (1975). Handbuch der Präparativen Anorganischen Chemie, Vol. 1,

edited by G. Brauer, p. 372f. Stuttgart, Germany: Ferdinand Enke Verlag. Jacobson, R. A. (1999). *REQABA*. Version 1.1. Rigaku Corporation, Tokyo, Japan.

McCarthy, T. J. & Kanatzidis, M. G. (1995). Inorg. Chem. 34, 1257-1267.

Menzel, F., Brockner, W., Carrillo-Cabrera, W. & von Schnering, H. G. (1994). Z. Anorg. Allg. Chem. 620, 1081–1086.

Molecular Structure Corporation (1997–1999). *TEXSAN for Windows*. Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA. Rigaku (1999). *CrystalClear*. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.