Acta Crystallographica Section C

Crystal Structure

Communications

ISSN 0108-2701

High-temperature synthesis of $\mathbf{R b}_{\mathbf{2}} \mathbf{M n P}_{\mathbf{2}} \mathbf{S}_{\mathbf{6}}$ in molten salt medium

Stephen P. Taylor, Mariusz Krawiec and Shiou-Jyh Hwu*

Department of Chemistry, Clemson University, Clemson, South Carolina 29634-0973, USA
Correspondence e-mail: shwu@clemson.edu

Received 11 May 2001
Accepted 23 October 2001
Online 13 February 2002
Transparent yellow plates of rubidium manganese hexathiodiphosphate, $\mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$, were synthesized in molten RbBr . The compound is isotypic to other compounds of the type $A_{2} M \mathrm{P}_{2} Q_{6}(A=\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; M=\mathrm{Mn}, \mathrm{Fe} ; Q=\mathrm{S}, \mathrm{Se})$. Its structure can be viewed as columns of face-sharing S_{6} polyhedra parallel to the a axis, interconnected by Rb^{+}. The S_{6} polyhedra are centered alternately by Mn (in octahedral coordination) and P_{2} units (in trigonal antiprisms). The Mn atom and $\mathrm{P}_{2} \mathrm{~S}_{6}$ group lie on centers of symmetry.

Comment

There are seven known compounds of the type $A_{2} M_{2} Q_{6}(A=$ $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs} ; M=\mathrm{Mn}, \mathrm{Fe} ; Q=\mathrm{S}, \mathrm{Se})$, including $\mathrm{K}_{2} \mathrm{FeP}_{2} \mathrm{~S}_{6}$

Figure 1
The layered structure of $\mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$, projected onto the plane of parallel [$\mathrm{MnP}_{2} \mathrm{~S}_{6}$] chains, separated by a layer of Rb^{+}cations (large black circles). The large light-gray circles represent S, medium gray circles represent P, and small black circles represent Mn atoms.
(Carrillo-Cabrera et al., 1992, 1994) and $\mathrm{K}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$ (Menzel et al., 1994); and $\mathrm{K}_{2} \mathrm{MnP}_{2} \mathrm{Se}_{6}, \mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{Se}_{6}, \mathrm{Cs}_{2} \mathrm{MnP}_{2} \mathrm{Se}_{6}$, $\mathrm{K}_{2} \mathrm{FeP}_{2} \mathrm{Se}_{6}$, and $\mathrm{Cs}_{2} \mathrm{FeP}_{2} \mathrm{Se}_{6}$ (McCarthy \& Kanatzidis, 1995). The title compound is typical of this class of compounds. The first two compounds listed above were synthesized from the elements, while the final five were synthesized in a polychalcophosphate flux. We were able to prepare rubidium manganese hexathiodiphosphate using molten rubidium bromide as a flux-growth solvent, similar to the synthesis of $\mathrm{KNb}_{2} \mathrm{PS}_{10}$ (Do \& Yun, 1996), which was performed in a eutectic mixture of LiCl and KCl . As in the other members of this class, the structure is related to that of CdCl_{2} (Brec, 1986, and references therein; see Fig. 1).

Experimental

$\mathrm{Rb}_{2} \mathrm{~S}_{6}$ powder was prepared by reaction of stoichiometric amounts of rubidium metal (Strem, $99.9+\%$) and sulfur powder (Aldrich, 99.99%) in liquid ammonia (Fehér, 1975). Crystals of $\mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$ were synthesized from a mixture of $\mathrm{Rb}_{2} \mathrm{~S}_{6}$ powder $(0.1107 \mathrm{~g}$, 0.3044 mmol), MnS powder (Strem, $99.9 \% ; 0.0265 \mathrm{~g}, 0.3046 \mathrm{mmol}$) and $\mathrm{P}_{4} \mathrm{~S}_{3}$ powder (Fluka, 98%; $0.3127 \mathrm{~g}, 1.4209 \mathrm{mmol}$), with RbBr (GFS, $99.9 \% ; 0.0503 \mathrm{~g}, 0.3042 \mathrm{mmol}$) acting as a halide flux-growth solvent. The powders were ground together in an agate mortar inside a nitrogen-filled glove-box, and were then loaded into fused-quartz tubing. The reaction tube was subsequently sealed under vacuum. After heating at 973 K for 5 d , the reaction vessel was allowed to cool to room temperature over a period of 7 d . Transparent yellow plate crystals of $\mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$ were present throughout the reaction product, which also included MnS crystals, unreacted $\mathrm{P}_{4} \mathrm{~S}_{3}$ powder, and RbBr .

Crystal data

$\mathrm{Rb}_{2} \mathrm{MnP}_{2} \mathrm{~S}_{6}$
$M_{r}=480.18$
Monoclinic, $P 2_{1} / n$
$a=6.1570$ (12) A
$b=12.308$ (3) \AA
$c=7.5610(15) \AA$
$\beta=97.74$ (3) ${ }^{\circ}$
$V=567.8(2) \AA^{3}$
$Z=2$

Data collection

Rigaku APC8 diffractometer ω scans
Absorption correction: multi-scan
(REQABA; Jacobson, 1999)
$T_{\text {min }}=0.258, T_{\text {max }}=0.577$
5210 measured reflections
1110 independent reflections

Refinement

Refinement on F^{2}
$D_{x}=2.809 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 6144 reflections
$\theta=1.7-26.1^{\circ}$
$\mu=11.00 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate, yellow
$0.15 \times 0.05 \times 0.05 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.055$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0001 P)^{2} \\
&+12.3434 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=1.06 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.73 \mathrm{e}^{-3}
\end{aligned}
$$

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve

inorganic compounds

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

$\mathrm{Mn} 1-\mathrm{S} 2$	$2.619(3)$	$\mathrm{P} 1-\mathrm{S} 1^{\mathrm{i}}$	$2.008(3)$
$\mathrm{Mn} 1-\mathrm{S} 3$	$2.652(3)$	$\mathrm{P} 1-\mathrm{S} 2$	$2.021(3)$
$\mathrm{Mn} 1-\mathrm{S} 1$	$2.659(3)$	$\mathrm{P} 1-\mathrm{S} 3$	$2.022(3)$
$\mathrm{Mn} 1-\mathrm{P} 1$	$2.964(2)$	$\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$2.208(5)$
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 3^{\mathrm{ii}}$	$102.54(8)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{P} 1-\mathrm{S} 2$	$115.95(15)$
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 3$	$77.46(8)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{P} 1-\mathrm{S} 3$	$115.97(16)$
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 1^{\mathrm{ii}}$	$89.90(8)$	$\mathrm{S} 2-\mathrm{P} 1-\mathrm{S} 3$	$109.32(14)$
$\mathrm{S} 3-\mathrm{Mn} 1-\mathrm{S} 1^{\mathrm{i}}$	$90.85(8)$	$\mathrm{S} 1^{\mathrm{i}}-\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$104.14(16)$
$\mathrm{S} 2-\mathrm{Mn} 1-\mathrm{S} 1$	$90.10(8)$	$\mathrm{S} 2-\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$105.25(17)$
$\mathrm{S} 3-\mathrm{Mn} 1-\mathrm{S} 1$	$89.15(8)$	$\mathrm{S} 3-\mathrm{P} 1-\mathrm{P} 1^{\mathrm{i}}$	$104.85(18)$

Symmetry codes: (i) $1-x,-y, 1-z$; (ii) $-x,-y, 1-z$.
structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 1997-1999).

The authors gratefully acknowledge the continued financial support from the National Science Foundation
(DMR-0077321 and EPS-9977797 for the research and CHE-9808165 for the X-ray diffractometer).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1335). Services for accessing these data are described at the back of the journal.

References

Brec, R. (1986). Solid State Ionics, 22, 3-30.
Carrillo-Cabrera, W., Saßmannshausen, J., von Schnering, H. G., Menzel, F. \& Brockner, W. (1992). Z. Kristallogr. 202, 150-151.
Carrillo-Cabrera, W., Saßmannshausen, J., von Schnering, H. G., Menzel, F. \& Brockner, W. (1994). Z. Anorg. Allg. Chem. 620, 489-494.
Do, J. \& Yun, H. A. (1996). Inorg. Chem. 35, 3729-3730.
Fehér, F. (1975). Handbuch der Präparativen Anorganischen Chemie, Vol. 1, edited by G. Brauer, p. 372f. Stuttgart, Germany: Ferdinand Enke Verlag.
Jacobson, R. A. (1999). REQABA. Version 1.1. Rigaku Corporation, Tokyo, Japan.
McCarthy, T. J. \& Kanatzidis, M. G. (1995). Inorg. Chem. 34, 1257-1267.
Menzel, F., Brockner, W., Carrillo-Cabrera, W. \& von Schnering, H. G. (1994). Z. Anorg. Allg. Chem. 620, 1081-1086.

Molecular Structure Corporation (1997-1999). TEXSAN for Windows.
Version 1.06. MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Rigaku (1999). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

